
A Tree Distance Function Based on Multi-sets

Arnoldo José Müller-Molina, Kouichi Hirata, and Takeshi Shinohara

Department of Artificial Intelligence, Kyushu Institute of Technology
Kawazu 680-4 Iizuka 820-8502, Japan
arnoldo@daisy.ai.kyutech.ac.jp

{hirata,shino}@ai.kyutech.ac.jp

Abstract. We introduce a tree distance function based on multi-sets.
We show that this function is a metric on tree spaces, and we design
an algorithm to compute the distance between trees of size at most n
in O(n2) time and O(n) space. Contrary to other tree distance func-
tions that require expensive memory allocations to maintain dynamic
programming tables of forests, our function can be implemented over
simple and static structures. Additionally, we present a case study in
which we compare our function with other two distance functions.

Key words: Tree edit distance, Program matching, Triangle inequality,
Metric

1 Introduction

Analysis of tree structured data is required in many fields [6, 9, 18]. Our re-
search group is particularly interested in the field of approximate binary pro-
gram matching for the detection of Open Source/Libre software license violations
[11, 12]. A recent technique in this field works by generating fragments, that are
regarded as trees, from control flow graphs. By means of a tree distance function,
the similarity of two programs can be computed. We are interested in distance
functions that satisfy the triangle inequality. If this property is satisfied, then
we can employ dimension reduction techniques like SMAP [14], and therefore
matching speed on massive databases improves considerably. Additionally, it is
desirable that the distance function is a metric. Specifically, it is necessary for
the distance function to satisfy the property: d(x, y) = 0 if and only if x = y. If
this property is satisfied, the matching of programs is “safer” and false positives
are reduced.

An overview of current literature [2] presents a tree edit distance function
and several variants. To compute every distance function that is metric in [2],
it is necessary at least O(n2) time where n is the maximum number of nodes in
two given trees. In this paper, we propose a new tree distance function based
on multi-sets that is simple to compute, and that does not require dynamic
programming or intensive memory allocations. The main contribution of this
paper is to introduce a metric for rooted ordered labeled trees that can be
computed in O(n2) time and O(n) space. We denote this metric as mtd. The

rest of the paper is organized as follows. Section 2 introduces related works.
In Section 3, the proposed distance mtd is described and in Section 4, a naive
algorithm to compute mtd is presented. Finally in Section 5, we present a case
study.

2 Related Works

The generally accepted similarity measure for trees is the tree-edit distance met-
ric (ted) introduced by Tai[15] in 1979. Klein[10] proposed an O(n3 log(n)) al-
gorithm to compute ted. This problem is known to be NP-hard for unordered
trees[19]. Currently, the fastest algorithm for ordered trees is O(n3)[5].

Chawathe et al.[3] introduced an approach in which the set of edit operations
is extended. This distance is NP-complete, and the fastest heuristic runs in O(n3)
time. A different variation [4] is linear, however it is not clear if these similarity
functions are metrics nor if they satisfy the triangle inequality.

The tree alignment distance introduced by Jiang et al.[7] is not a metric. Fi-
nally, the fastest metric that we are aware of is the constrained edit distance[17],
with time O(n2) and space O(n log(n)). The distance functions described above
can be seen as an edit script minimization problem. On the other hand, functions
based on q-grams [1, 13, 16] are a vector feature distance minimization. These
functions have linear complexity, but they are not metrics.

2.1 Approximate Program Matching

The function presented in this paper, is intended to be used in the context of
approximate binary program matching field. Müller-Molina and Shinohara in-
troduced a technique based on extracting program fragments[11] from binary
programs. A program fragment is a tree whose nodes are machine-level instruc-
tion codes. They are extracted from program control flow graphs. By analyzing
the frequency distribution of the fragments, it is possible to employ “standard”
information retrieval techniques to rank programs by similarity. The technique
also uses tree distance functions to find similar pairs of program fragments. In
this way, even if fragment normalization rules fail, the distance function can com-
pensate for differences introduced by a program transformation. This process is
analogous to the stemming process web information retrieval engines apply to
each word of a natural language query. The distance introduced in this paper has
been employed successfully in this context, but its properties were not studied
formally.

3 Tree Similarity Distance

A tree is a connected graph without cycles. For a tree T = (V,E), we sometimes
denote v ∈ T instead of v ∈ V , and |T | instead of |V |. A rooted tree is a tree
with one node r chosen as its root .

Let r be a root of T and v a node in T . Then, the parent of v(6= r) is its
adjacent node in a path from v to r in T , and the ancestors of v(6= r) are the
nodes contained in a path from the parent of v to r in T . The parent and the
ancestors of the root r are undefined. We say that u is a child of v if v is the
parent of u, and u is a descendant of v if v is an ancestor of u. A leaf is a node
having no children. Furthermore, a complete subtree of T at v is a subtree of T
of which its root is v and that contains all descendants of v.

A rooted tree T = (V,E) is labeled (by an alphabet Σ of labels) if there
exists an onto function l : V → Σ such that l(v) = a (v ∈ V, a ∈ Σ). A tree is
ordered if a left-to-right order for the children of each node is given; unordered
otherwise. In this paper, we call a rooted labeled ordered tree simply by a tree.

Next, we introduce the notions of multi-sets. Intuitively, a multi-set is a set
that allows an element to occur more than once. The multiplicity mA(x) of an
element x in a multi-set A is the number of the occurrences of x in A. For a
(standard) set A, it holds that mA(x) = 1 for every x ∈ A. It is clear that x 6∈ A
if mA(x) = 0. The set view v(A) of a multi-set A is a set {x ∈ A | mA(x) ≥ 1}.
For example, for a multi-set A = {a, a, a, b, c, c}, it holds that v(A) = {a, b, c}.
Additionally, the cardinality |A| of a multi-set A is defined as

∑
x∈v(A)mA(x).

We now introduce the multi-set operations. Let A and B be multi-sets. Then,
the intersection AuB, the union AtB and the additive union A]B of A and
B are defined as follows.

A uB = {x ∈ v(A) ∩ v(B) | mAuB(x) = min{mA(x),mB(x)}},
A tB = {x ∈ v(A) ∪ v(B) | mAuB(x) = max{mA(x),mB(x)}},
A]B = {x ∈ v(A) ∪ v(B) | mA]B(x) = mA(x) +mB(x)}.

For example, let A = {a, a, b, c, c} and B = {a, b, b, c}. Then, it holds that
A uB = {a, b, c}, A tB = {a, a, b, b, c, c} and A]B = {a, a, a, b, b, b, c, c, c}.

Based on the previous operations, we define a similarity measure for multi-
sets:

δ(A,B) = |A tB| − |A uB|. (1)

Finally, we introduce the function s(T) which is the multi-set of all complete
subtrees of T . For example, in Figure 1 the tree C(B) is not a complete subtree of
T1, but C(B,E) is a complete subtree of T1. The function n(T), is the multi-set
of all the nodes of T .

3.1 Distance definition

The first step to calculate our similarity function is to convert a tree into two
multi-sets, one multi-set of complete subtrees and another multi-set that contains
all the nodes (without children) of the tree. This can be achieved by invoking
functions s and n. Once the multi-sets of the trees have been generated, the
function mtd can be computed. The function mtd is defined as:

ds(T1, T2) = δ(s(T1), s(T2)), (2)

dn(T1, T2) = δ(n(T1), n(T2)), (3)

mtd(T1, T2) =
ds(T1, T2) + dn(T1, T2)

2
. (4)

The mtd function is composed of two different distance operations: ds and
dn. The first function ds is a measure based on the number of equal complete
subtrees between T1 and T2. Note that a change of only one leaf node can
have multiple repercussions in all its parents. In general, this measure is very
sensitive to changes and quickly the intersection s(T1) u s(T2) becomes void.
Nevertheless, an important reason to have this intersection is that it makes sure
that mtd(T1, T2) = 0 iff T1 = T2. Additionally, trees that share many common
complete subtrees will receive a high score.

The second function dn is a measure that is likely to find matches since only
individual nodes are considered. Note that dn is Kailing’s distance based on the
label histogram [8]. Using only this measure would make trees very similar to
each other, however it is necessary to balance the strictness of ds.

To summarize, the intuitive idea of our matching procedure is that a very
strict matching (ds) combined with a permissive matching (dn) brings a balance
to the scoring technique. In the context of binary program matching, we have
found that both mtd and ds return acceptable results. Function mtd produces
slightly better results than ds.

Note that mtd always returns a natural number. Precisely, we have the fol-
lowing proposition:

Proposition 1. ds(T1, T2) + dn(T1, T2) is even for any trees T1 and T2.

Proof. For multi-sets A and B, since |AtB|+ |AuB| = |A]B| , it holds that
|A t B| − |A u B| = |A] B| − 2|A u B|. Then, for multi-sets s(Ti), and n(Ti)
(i = 1, 2), the following equation holds:

|s(T1) t s(T2)| − |s(T1) u s(T2)|+ |n(T1) t n(T2)| − |n(T1) u n(T2)| (5)

= |s(T1)] s(T2)| − 2|s(T1) u s(T2)|+ |n(T1)] n(T2)| − 2|n(T1) u n(T2)| (6)

Since |s(Ti)| = |n(Ti)|, let |n(Ti)| = |s(Ti)| = ki. Hence, we can obtain the
following even expression:

2k1 + 2k2 − 2|s(T1) u s(T2)| − 2|n(T1) u n(T2)|. (7)

ut

In what follows, we give some examples of mtd.
In Figure 1 three examples are displayed. In the first example, mtd(T1, T2),

returns 2 because it does not consider in which place a complete subtree is found
(multi-sets do not record the position of the subtrees). The function ted(T1, T3)
returned 2 because “C” is deleted, and a new “C” node is inserted over the two
“B” nodes.

In the second example, mtd(T1, T3) is calculating the distance of two node
renaming operations. The result is again the same for ted(T1, T3). In the third

example, mtd(T4, T5) returns 5 because all of the complete subtrees of T4 except
“E” and “F” are not in T5. The deeper the modification is, the greater the
distance will be. In the context of binary program matching[12] this behavior
is desirable because changes in the deepest part of an expression are likely to
change more drastically the “meaning” of the expression than changes in upper
layers of the expression.

T1 T2 T3 T4 T5

A

B C

B E

A

C

B B

E

A

E C

B B

A

B

F C

D E

A

B

F C

G E

s(T1) = {A(B, C(B, E)), B, C(B, E), B, E} n(T1) = {A, B, C, B, E}
s(T2) = {A(C(B, B), E), C(B, B), B, B, E} n(T2) = {A, C, B, B, E}
s(T3) = {A(E, C(B, B)), E, C(B, B), B, B} n(T3) = {A, E, C, B, B}
s(T4) = {A(B(F, C(D, E))), B(F, C(D, E)), F, C(D, E), D, E} n(T4) = {A, B, F, C, D, E}
s(T5) = {A(B(F, C(G, E))), B(F, C(G, E)), F, C(G, E), G, E} n(T5) = {A, B, F, C, G, E}

|s(T1) u s(T2)| = 3 |s(T1) u s(T3)| = 3 |s(T4) u s(T5)| = 2
|n(T1) u n(T2)| = 5 |n(T1) u n(T3)| = 5 |n(T4) u n(T5)| = 5

mtd(T1, T2) = (7−3)+(5−5)
2

= 2 ted(T1, T2) = 2

mtd(T1, T3) = (7−3)+(5−5)
2

= 2 ted(T1, T3) = 2

mtd(T4, T5) = (10−2)+(7−5)
2

= 5 ted(T4, T5) = 1

Fig. 1. This example calculates mtd(T1, T2), mtd(T1, T3), and mtd(T4, T5). T1 and
T2 illustrate the cost of complete subtree movement. T1 and T3, illustrate two label
modification operations. T3 and T4 depict the cost of one node modified at deep levels
of the tree.

In Figure 2, an example in which mtd returns a smaller value than ted is
shown. In this case, mtd(T1, T2) returns a smaller distance than ted(T1, T2) be-
cause swapped nodes (rooted in “C” and “D”) were children of a node whose
label was modified. Because the algorithm does not differentiate when the root
node and the children are modified, the score is lower. The function ted(T1, T2)
returns 3 because “A” is renamed by “H”, “D” is deleted, and finally, “D” is
inserted to the left of “C”.

Proposition 2. For any trees T1, T2 and T3, the following statements hold:

1. mtd(T1, T2) ≥ 0 non-negativity
2. mtd(T1, T2) = mtd(T1, T2) symmetry
3. mtd(T1, T2) = 0 ⇐⇒ T1 = T2 identity of indiscernibles
4. mtd(T1, T3) ≤ mtd(T1, T2) +mtd(T2, T3) triangle inequality

T1 T2

A

B C

E F

G

D

H

B D C

E F

G

s(T1) = {A(B, C(E, F (G)), D), B, C(E, F (G)), E, F (G), G, D} n(T1) = {A, B, C, E, F, G, D}
s(T2) = {H(B, D, C(E, F (G))), B, D, C(E, F (G)), E, F (G), G} n(T2) = {H, B, D, C, E, F, G}

|s(T1) u s(T2)| = 6 |n(T1) u n(T2)| = 6

mtd(T1, T2) = (8−6)+(8−6)
2

= 2 ted(T1, T2) = 3

Fig. 2. In this example, mtd returns a smaller distance than ted.

Proof. Properties 1 and 2 are obvious. Property 3 can be deduced from the fact
that T1 and T2 are returned by the ds function. If there is any change between
the trees, the original tree will not be matched in the intersection operation and
a distance greater than zero will be computed.

We now prove property 4. It is sufficient to prove that δ satisfies the triangle
inequality, δ(A,C) ≤ δ(A,B) + δ(B,C).

The function δ(A,B) can be rewritten as:

δ(A,B) =
∑

x∈v(A)∪v(B)

|mA(x)−mB(x)|. (8)

Since:
|mA(x)−mC(x)| ≤ |mA(x)−mB(x)|+ |mB(x)−mC(x)|, (9)

the triangle inequality holds. Therefore mtd is a metric on tree spaces.
ut

4 Naive Algorithm for computing mtd

In what follows, we describe a naive algorithm for computing δ and mtd. Once δ
is obtained, mtd can be computed easily. In lines 3 to 7 of Algorithm 1, the tree v
is compared against all the trees of size |v| of the multi-set A. This optimization
is necessary to keep the complexity quadratic as we shall see later. The function
δ (lines 12 to 14) calculates the intersection between the multi-sets A and B
by obtaining the minimum of the multiplicity of the common elements. Finally
in line 15, the cardinality of the union of |T1| and |T2| is subtracted from the
cardinality of the intersection of T1 and T2 and the result is returned to the
caller.

We now proceed to analyze the complexity of algorithm mtd. The following
lemma is useful:

Algorithm 1 δ and m functions implementation
Receives a multi-set an a tree

1: function m(A, v) . Returns mA(v)
2: c← 0 . Multiplicity counter
3: for m ∈ A such that |v| = |m| do . Only compare trees of size |v|.
4: if m = v then
5: c← c+ 1
6: end if
7: end for
8: return c
9: end function

Receives two multi-sets
v(x) receives a multi-set x and returns a set “view” of x.

10: function δ(A,B) . Returns δ(A,B)
11: c← 0 . Intersection counter
12: for v ∈ v(A) do
13: c← c+min(mA(v),mB(v))
14: end for
15: return |A tB| − c
16: end function

Lemma 1. Every tree of size m has at most m
n complete subtrees of size n.

Theorem 1. The distance function mtd(F,G) can be computed in O(|T1|×|T2|)
time and O(|T1|+ |T2|) space.

Proof. It is necessary to consider the cost involved in comparing the equality
of two trees. For two trees T1 and T2, it is obvious that checking whether or
not T1 = T2, can be computed in O(|T1|) time. The computation of s and n
can be achieved in linear time. Additionally, the space required by the multi-
sets returned by s and n is linear because it is sufficient to store pointers to
the original trees. Regarding m, we can see in line 3 of Algorithm 1 that for a
complete subtree v ∈ A, the function will only compare complete subtrees of size
|v| in B.

Since dn matches only nodes (trees of size 1), it can be computed in linear
time, therefore we will focus only on ds. Each equality comparison for any com-
plete subtree v ∈ F will take at most |v| steps, and will be executed at most
|T2|
|v| times. This is because we will only match complete subtrees in F of size
|v| (Algorithm 1, line 3) and because Lemma 1 guarantees that |T2| has only
|T2|
|v| complete subtrees of size |v|. Therefore, the multiplicity ms(T2)(v) can be

computed in O(|v| × |T2|
|v|) = O(|T2|) time. Since the multiplicity function m will

be called by δ at most |T1| times, the function mtd(T1, T2) can be computed in
O(|T1| × |T2|) time. Since it is possible to create a multi-set of pointers to the
original nodes of the tree, the space complexity for mtd(T1, T2) is O(|T1|+ |T2|).

ut

Our current implementation uses hash tables to improve performance. Hash
codes have greater pruning power than the pruning by tree size described above,
however this is not enough to lower the complexity of the algorithm. In the
experiments of section 5, we will see that in practice, our hash-based mtd imple-
mentation matches the performance of a linear q-gram based distance function.

5 Case Study

In this section, we compare our function against BDist [16] and ted [15]. Cur-
rently, we are not able to run ted on our approximate program matching frame-
work1 because of its enormous computational cost. Therefore, our experiments
were executed on real tree data extracted from program fragments[12] but focus
on the distance functions only. The procedure to extract these fragments is de-
tailed in [12]. Our data-set2 includes 244668 trees. The average depth is 4.75, the
average number of nodes is 11.11, and the number of nodes range between 1 to
20 nodes. In the experiment, we randomly selected 1000 trees (queries) from the
data-set and compared them against the rest of the data-set. About 244 million
tree comparisons were performed.

We implemented the ted [5] that can be computed in O(n3) time, BDist[16]
that can be computed in O(n) time, and mtd that has a time complexity of
O(n2). The distance functions were implemented in Java. The source code of the
functions is available under the GPL license3. For the performance benchmarks,
we loaded all the trees into memory and the time is counted after all the trees
have been loaded. The experiments were executed on a Intel(R) Xeon(R) CPU
2.66 GHz with 4 processors. Four threads were created to reduce execution time.
Each thread performs the same job.

Regarding the q-gram function, we used Yang’s BDist function[16]. In this
case, BDist will create |T | grams from a tree T by creating for each node v ∈ T , a
triple of the left child of v, v, and the right sibling of v. The original motivation
of the paper was to create a similarity search engine by creating an inverted
file of each q-gram. In this paper we simply calculated BDist in a sequential
manner to show the real cost of a linear distance function. By using the similarity
index presented by Yang, better performance results can be achieved for BDist.
Finally, it can be proved that BDist(T1, T2) ≤ 5× ted(T1, T2)[16].

Distance Evaluation

In Figure 3, we show the distribution of data according to distances between
data and queries. In the y axis, the percentage of calculations that returned
the distance shown in the x axis is displayed. We can see that all the functions
maintain a similar, normal distribution.

1 http://www.furiachan.org
2 http://furia-chan.googlecode.com/files/trees1-20.tar.bz2
3 http://furia-chan.googlecode.com/files/mtd-1.tar.bz2

0

2

4

6

8

10

12

14

16

18

0 5 10 15 20 25 30 35 40

%
of

ca
lc

ul
at

io
ns

Distance

Distance Distribution

ted
mtd

BDist

Fig. 3. Distribution of data according to distances between data and queries.

In Figures 4(a) and 4(b), we compare respectively, how mtd and BDist vary
from the result returned by ted. For mtd, the mean and standard deviation are
closer than BDist. Additionally, maximum values for mtd tend to be smaller
than for BDist. On the other hand, Bdist’s minimum values seem to be closer
to ted. When BDist is used in its similarity search framework (and when a
range r is provided), additional pruning can be performed by the pre-order and
post-order counts of the node. In this case, BDist cannot satisfy the triangle
inequality and that is why we did not include this pruning. BDist is returning
bigger results than mtd because subtree movements return lower values than
for BDist as siblings are not taken into account. For example in Figure 2, the
distance returned by BDist is 8 for T1 and T2. Since the shape of the distribution
and the overall distance results are closer to ted, we can conclude that mtd
performs better than BDist.

In Figures 5(a) and 5(b), we compare how ds and dn vary from the result
returned by ted. We can see how ds has bigger maximum values than mtd (Fig-
ure 4(a)). On the other hand, dn has smaller minimum values than mtd or ds.
Finally, we can see that mtd’s minimum and maximum range is improved by the
combination of ds and dn. The mean and standard deviation for mtd is centered
between ds and dn. If we base our comparison on ted, the use of dn is justified.
It is interesting to see that the closest function to ted when considering only the
standard deviation is dn.

Benchmarks

For the same experiment described at the beginning of the section, we recorded
the execution time for ted, BDist and mtd. The function ted took about 85
hours to complete, BDist took 8 minutes, and mtd took 7.4 minutes. The small
difference between BDist and mtd might be related to the hash function being

0
5

10
15
20
25
30
35
40
45

0 5 10 15 20 25 30 35M
ea

n,
st

d.
de

vi
at

io
n,

m
in

an
d

m
ax

ted distance

Variation of mtd when ted is x

ted avg/std dev.

(a) mtd

0
5

10
15
20
25
30
35
40
45

0 5 10 15 20 25 30 35M
ea

n,
st

d.
de

vi
at

io
n,

m
in

an
d

m
ax

ted distance

Variation of Bdist when ted is x

ted avg/std dev.

(b) BDist

Fig. 4. Variation of mtd and BDist with respect to the result x of ted

0
5

10
15
20
25
30
35
40
45

0 5 10 15 20 25 30 35M
ea

n,
st

d.
de

vi
at

io
n,

m
in

an
d

m
ax

ted distance

Variation of ds when ted is x

ted avg/std dev.

(a) ds

0
5

10
15
20
25
30
35
40
45

0 5 10 15 20 25 30 35M
ea

n,
st

d.
de

vi
at

io
n,

m
in

an
d

m
ax

ted distance

Variation of dn when ted is x

ted avg/std dev.

(b) dn

Fig. 5. Variation of ds and dn with respect to the result x of ted

called more times in BDist than in mtd. On the other hand, mtd was imple-
mented recursively and there is much room for improvement. One of the reasons
ted is performing so poorly is that for each distance computation, many objects
are being created (dynamic programming table objects and forests created and
destroyed during the search). On the contrary, mtd and BDist only have to
access some static structures that are computed once during the lifetime of a
tree. From the benchmarking results, can see how the actual performance of our
function seems to be on par with a linear q-gram distance function.

6 Conclusions and Future Work

We have introduced a tree distance function that is based on multi-sets. When
compared to ted, our function is more sensitive to changes. This is in general an
undesirable property, however the performance gains are considerable enough to
make it a worthwhile candidate for matching trees. Our function is fast because
it can perform matchings without resorting to expensive dynamic programming
table memory allocations. Our hash table based implementation achieved similar
performance than BDist[16], a q-gram based function that runs in time O(n).
Our distance function also has the added property of being a metric.

Regarding future works, because mtd is faster than ted, it can be employed
by techniques like SMAP [14] to find a subset of the data suitable for pivoting.
From that subset, a set of pivots based on ted could be computed. Finally, we
would like to study the effect of adding N-grams greater than 1 to function n.

References

[1] N. Augsten, M. Bhlen, and J. Gamper. Approximate matching of hierarchical
data using pq-grams. In VLDB ’05, pages 301–312, 2005.

[2] P. Bille. A survey on tree edit distance and related problems. Theoretical Com-
puter Science, 337(1-3):217–239, 2005.

[3] S. S. Chawathe and H. Garcia-Molina. Meaningful change detection in structured
data. SIGMOD Rec., 26(2):26–37, 1997.

[4] S. S. Chawathe, A. Rajaraman, H. Garcia-Molina, and J. Widom. Change de-
tection in hierarchically structured information. SIGMOD Rec., 25(2):493–504,
1996.

[5] E. Demaine, S. Mosez, B. Rossman, and O. Weimann. An optimal decomposition
algorithm for tree edit distance. In ICALP ’07, LNCS, volume 4596, pages 146–
157. Springer-Verlag, 2007.

[6] M. Garofalakis and A. Kumar. Xml stream processing using tree-edit distance
embeddings. ACM Trans. Database Syst., 30(1):279–332, 2005.

[7] T. Jiang, L. Wang, and K. Zhang. Alignment of trees - an alternative to tree edit.
Theoretical Computer Science, 143(1):157–148, 1995.

[8] K. Kailing, H.-P. Kriegel, S. Schoenauer, and T. Seidl. Efficient similarity search
for hierarchical data in large databases. In EDBT ’04 LNCS, volume 2992, pages
676–693, 2004.

[9] P. Klein, S. Tirthapura, D. Sharvit, and B. Kimia. A tree-edit-distance algorithm
for comparing simple, closed shapes. In SODA ’00, pages 696–704, Philadelphia,
USA, 2000. Society for Industrial and Applied Mathematics.

[10] P. N. Klein. Computing the edit-distance between unrooted ordered trees. In
ESA ’98, LNCS, volume 1461, pages 91–102. Springer-Verlag, 1998.

[11] A. J. Müller-Molina and T. Shinohara. On approximate matching of programs
for protecting libre software. In CASCON ’06, pages 275–289. ACM Press, 2006.

[12] A. J. Müller-Molina and T. Shinohara. Fast approximate matching of programs
for protecting libre/open source software by using spatial indexes. In SCAM ’07,
pages 111–122. IEEE Computer Society, 2007.

[13] N. Ohkura, K. Hirata, T. Kuboyama, and M. Harao. The q-gram distance for
ordered unlabeled trees. In Discovery Science LNAI, volume 3735, pages 189–202,
2004.

[14] T. Shinohara and H. Ishizaka. On dimension reduction mappings for approximate
retrieval of multi-dimensional data. In Progress in Discovery Science, LNCS,
volume 2281, pages 224–231. Springer-Verlag, 2002.

[15] K.-C. Tai. The tree-to-tree correction problem. JACM, 26(3):422–433, 1979.
[16] R. Yang, P. Kalnis, and A. K. H. Tung. Similarity evaluation on tree-structured

data. In SIGMOD ’05, pages 754–765, 2005.
[17] K. Zhang. Algorithms for the constrained editing distance between ordered labeled

trees and related problems. Pattern Recognition, 28(3):463–474, 1995.
[18] K. Zhang. Computing similarity between rna secondary structures. INTSYS ’98,

pages 126–132, 1998.
[19] K. Zhang, R. Statman, and D. Shasha. On the editing distance between unordered

labeled trees. Information Processing Letters, 42(3):133–139, 1992.

