
Introduction
Approximate Matching of Programs

Summary

On Approximate Matching of
Programs for Protecting Libre

Software

Arnoldo Müller Takeshi Shinohara

Department of Artificial Intelligence
Kyushu Institute of Technology (Iizuka, Japan)

CASCON Oct 19, 2006

Arnoldo Müller, Takeshi Shinohara Matching of Programs for Protecting Libre Software

Introduction
Approximate Matching of Programs

Summary

Outline

1 Introduction
Motivation
Related Work

2 Approximate Matching of Programs
Slices
Implementation
Next Steps!

3 Summary

Arnoldo Müller, Takeshi Shinohara Matching of Programs for Protecting Libre Software

Introduction
Approximate Matching of Programs

Summary

Motivation
Related Work

Outline

1 Introduction
Motivation
Related Work

2 Approximate Matching of Programs
Slices
Implementation
Next Steps!

3 Summary

Arnoldo Müller, Takeshi Shinohara Matching of Programs for Protecting Libre Software

Introduction
Approximate Matching of Programs

Summary

Motivation
Related Work

Libre Software
Protect Libre Software

• Libre software = (Free software ∪ Open
Source Software)

• Licensing Violations.
• FSF and gpl-violations.
• Using “strings” (binutils).

• Source code of:
• Pirate program: not available.
• Libre program: available.

• Objective: Binary program matching.
• Different Compilers/Obfuscators/Strings.

Arnoldo Müller, Takeshi Shinohara Matching of Programs for Protecting Libre Software

Introduction
Approximate Matching of Programs

Summary

Motivation
Related Work

Libre Software
Protect Libre Software

• Libre software = (Free software ∪ Open
Source Software)

• Licensing Violations.
• FSF and gpl-violations.
• Using “strings” (binutils).

• Source code of:
• Pirate program: not available.
• Libre program: available.

• Objective: Binary program matching.
• Different Compilers/Obfuscators/Strings.

Arnoldo Müller, Takeshi Shinohara Matching of Programs for Protecting Libre Software

Introduction
Approximate Matching of Programs

Summary

Motivation
Related Work

Libre Software
Protect Libre Software

• Libre software = (Free software ∪ Open
Source Software)

• Licensing Violations.
• FSF and gpl-violations.
• Using “strings” (binutils).

• Source code of:
• Pirate program: not available.
• Libre program: available.

• Objective: Binary program matching.
• Different Compilers/Obfuscators/Strings.

Arnoldo Müller, Takeshi Shinohara Matching of Programs for Protecting Libre Software

Introduction
Approximate Matching of Programs

Summary

Motivation
Related Work

Outline

1 Introduction
Motivation
Related Work

2 Approximate Matching of Programs
Slices
Implementation
Next Steps!

3 Summary

Arnoldo Müller, Takeshi Shinohara Matching of Programs for Protecting Libre Software

Introduction
Approximate Matching of Programs

Summary

Motivation
Related Work

State of the art
No reliable techniques available that fit our problem setting

• “Strings” (binutils).
• Birthmarks (easy to obfuscate) [Tamada,

2005].
• Source-level slicing [Komondoor 2001].
• General obfuscation is impossible [Vadhan,

2001].
• We base our work on Compiler Validation

Transformation [Engelen, 2004].

Arnoldo Müller, Takeshi Shinohara Matching of Programs for Protecting Libre Software

Introduction
Approximate Matching of Programs

Summary

Motivation
Related Work

State of the art
No reliable techniques available that fit our problem setting

• “Strings” (binutils).
• Birthmarks (easy to obfuscate) [Tamada,

2005].
• Source-level slicing [Komondoor 2001].
• General obfuscation is impossible [Vadhan,

2001].
• We base our work on Compiler Validation

Transformation [Engelen, 2004].

Arnoldo Müller, Takeshi Shinohara Matching of Programs for Protecting Libre Software

Introduction
Approximate Matching of Programs

Summary

Slices
Implementation
Next Steps!

Matching of Programs
Achieved by slicing the programs and matching those slices

• Each slice is like a word of a document.
Arnoldo Müller, Takeshi Shinohara Matching of Programs for Protecting Libre Software

Introduction
Approximate Matching of Programs

Summary

Slices
Implementation
Next Steps!

Outline

1 Introduction
Motivation
Related Work

2 Approximate Matching of Programs
Slices
Implementation
Next Steps!

3 Summary

Arnoldo Müller, Takeshi Shinohara Matching of Programs for Protecting Libre Software

Slice Expansion
“Big” Slices can be used as program fingerprints.

i0 = i

res = 1

count = 1

block_0:

count_1 = Phi(count, count_2)

res_1 = Phi(res, res_2)

if count_1 > i0 goto block_1

res_2 = res_1 * count_1

count_2 = count_1 + 1

goto block_0

block_1:

return res_1

SSA representation

• SSA (Single Static
Assignment).

• Slices: right hand
side.

• References to other
slices.

• Replace references
with their contents.

• Becomes bigger.
• Useful fingerprint.

Slice Example
Replacements only performed once

Expanded Slice:

count_1 = Phi(1, count_1 + 1)

i0 = i

res = 1

count = 1

block_0:

res_1 = Phi(res, res_2)

if count_1 > i0 goto block_1

res_2 = res_1 * count_1

count_2 = count_1 + 1

goto block_0

block_1:

return res_1

count_1 = Phi(count, count_2)

count_1 = Phi(count, count_2)

Introduction
Approximate Matching of Programs

Summary

Slices
Implementation
Next Steps!

Equivalence of Slices
Similarity of slices can be calculated by “tree edit distance”

• Syntactical equivalence is not enough.
• Parts of the slices are ignored.

• Strings, variable names.
• Distance Matching.

• Between two slices A,B.
• Integer indicates how different A,B are.
• Tree edit distance.

Arnoldo Müller, Takeshi Shinohara Matching of Programs for Protecting Libre Software

Introduction
Approximate Matching of Programs

Summary

Slices
Implementation
Next Steps!

Equivalence of Slices
Similarity of slices can be calculated by “tree edit distance”

• Syntactical equivalence is not enough.
• Parts of the slices are ignored.

• Strings, variable names.
• Distance Matching.

• Between two slices A,B.
• Integer indicates how different A,B are.
• Tree edit distance.

Arnoldo Müller, Takeshi Shinohara Matching of Programs for Protecting Libre Software

Introduction
Approximate Matching of Programs

Summary

Slices
Implementation
Next Steps!

Outline

1 Introduction
Motivation
Related Work

2 Approximate Matching of Programs
Slices
Implementation
Next Steps!

3 Summary

Arnoldo Müller, Takeshi Shinohara Matching of Programs for Protecting Libre Software

Introduction
Approximate Matching of Programs

Summary

Slices
Implementation
Next Steps!

Furia
An approximate semantic matcher for Java

• Works on Java
Bytecode.

• Verified our ideas. It
works!

• But it is slow.
• License Violation:

• Trovador 3000 lines.
• Uses “jmusic”.
• Was Obfuscated.
• Matched against 369

Programs.

Matching: trovador
(JDK 1.5 + ZKM Obfs.)
App Name Score
jmusic 0.202
ChordAssist 0.189
pmd 0.077
skink 0.075
dynamicjava 0.064
catchxsl 0.059
j80 0.057
mockrunner 0.040
• With jikes 85%

Arnoldo Müller, Takeshi Shinohara Matching of Programs for Protecting Libre Software

Introduction
Approximate Matching of Programs

Summary

Slices
Implementation
Next Steps!

Furia
An approximate semantic matcher for Java

• Works on Java
Bytecode.

• Verified our ideas. It
works!

• But it is slow.
• License Violation:

• Trovador 3000 lines.
• Uses “jmusic”.
• Was Obfuscated.
• Matched against 369

Programs.

Matching: trovador
(JDK 1.5 + ZKM Obfs.)
App Name Score
jmusic 0.202
ChordAssist 0.189
pmd 0.077
skink 0.075
dynamicjava 0.064
catchxsl 0.059
j80 0.057
mockrunner 0.040
• With jikes 85%

Arnoldo Müller, Takeshi Shinohara Matching of Programs for Protecting Libre Software

Introduction
Approximate Matching of Programs

Summary

Slices
Implementation
Next Steps!

Furia
An approximate semantic matcher for Java

• Works on Java
Bytecode.

• Verified our ideas. It
works!

• But it is slow.
• License Violation:

• Trovador 3000 lines.
• Uses “jmusic”.
• Was Obfuscated.
• Matched against 369

Programs.

Matching: trovador
(JDK 1.5 + ZKM Obfs.)
App Name Score
jmusic 0.202
ChordAssist 0.189
pmd 0.077
skink 0.075
dynamicjava 0.064
catchxsl 0.059
j80 0.057
mockrunner 0.040
• With jikes 85%

Arnoldo Müller, Takeshi Shinohara Matching of Programs for Protecting Libre Software

Introduction
Approximate Matching of Programs

Summary

Slices
Implementation
Next Steps!

Outline

1 Introduction
Motivation
Related Work

2 Approximate Matching of Programs
Slices
Implementation
Next Steps!

3 Summary

Arnoldo Müller, Takeshi Shinohara Matching of Programs for Protecting Libre Software

Introduction
Approximate Matching of Programs

Summary

Slices
Implementation
Next Steps!

What’s next?
Create data for testing and improve speed. Learn slice changes

• Performance improvement.
• Database/corpora for measuring precision.
• Expression normalization.
• Learning techniques.
• Match/ranking refinements.
• Other architectures to byte-code.

Arnoldo Müller, Takeshi Shinohara Matching of Programs for Protecting Libre Software

Introduction
Approximate Matching of Programs

Summary

Summary
Results seem promising. Further experimentation is required

• A very simple and new technique has been
proposed.

• Slice + Expansion + Distance.

• Speed issues must be solved.
• The technique works reasonably well.

• Even with control flow obfuscation.

Arnoldo Müller, Takeshi Shinohara Matching of Programs for Protecting Libre Software

Introduction
Approximate Matching of Programs

Summary

Summary
Results seem promising. Further experimentation is required

• A very simple and new technique has been
proposed.

• Slice + Expansion + Distance.

• Speed issues must be solved.
• The technique works reasonably well.

• Even with control flow obfuscation.

Arnoldo Müller, Takeshi Shinohara Matching of Programs for Protecting Libre Software

Introduction
Approximate Matching of Programs

Summary

Summary
Results seem promising. Further experimentation is required

• A very simple and new technique has been
proposed.

• Slice + Expansion + Distance.

• Speed issues must be solved.
• The technique works reasonably well.

• Even with control flow obfuscation.

Arnoldo Müller, Takeshi Shinohara Matching of Programs for Protecting Libre Software

Introduction
Approximate Matching of Programs

Summary

Questions / Comments

• Thank you!
• You can contact me at:

• arnoldoMuller@gmail.com
• arnoldo@daisy.ai.kyutech.ac.jp

Arnoldo Müller, Takeshi Shinohara Matching of Programs for Protecting Libre Software

Introduction
Approximate Matching of Programs

Summary

Questions/Comments 1
Q: question A: answer C: comment

• Q: Can you use this for patent infringement
detection?

• A: No, this doesn’t match an algorithm, but
parts or snapshots of

• methods.
• C: Pointer to a research released in

Germany on source-level matching
• A: Need to check it, thank u!

Arnoldo Müller, Takeshi Shinohara Matching of Programs for Protecting Libre Software

Introduction
Approximate Matching of Programs

Summary

Questions/Comments 2
Q: question A: answer C: comment

• Q: What other transformations can an
obfuscator do?

• A: An obfuscator can add or remove or replace
instructions.

• Replacing can be undone by a term rewriting
rule.

• Removing instructions requires static analysis.
• Add instructions (that modify slices) adds

garbage into a phi
• instruction.

• Not a problem! if some subset slice matching
function is defined

• Using the best Obfuscator we could get.
Arnoldo Müller, Takeshi Shinohara Matching of Programs for Protecting Libre Software

Introduction
Approximate Matching of Programs

Summary

Questions/Comments 3
Q: question A: answer C: comment

• C: Maybe you should not release this so the
obfuscator developers will not try to attack
your techniques

• Q: How will you enforce this?
• A: This is not my job, this is the FSF’s and

gpl-violations group’s
• job.

• C: I have seen problems when enforcing
these things. Linksys

• example. (Comment from a linux kernel
developer)

• You have to buy the router in order to complain
about gpl violations.Arnoldo Müller, Takeshi Shinohara Matching of Programs for Protecting Libre Software

Introduction
Approximate Matching of Programs

Summary

Questions/Comments 4
Q: question A: answer C: comment

• C: What you are trying to do is very hard
(Formal specification

• expert)
• Recommendation: Use clustering.

fa
• Q: Formal methods won’t help you.
• C: Another reference from a German

researcher on source level matching
• Not yet checked :)

Arnoldo Müller, Takeshi Shinohara Matching of Programs for Protecting Libre Software

Introduction
Approximate Matching of Programs

Summary

Interesting Paper
Running programs on graphics cards

• Control flow graph is transformed
• Simplified
• To conform with gpu constrains

• It was a workshop so the paper is not
published in the proceedings

Arnoldo Müller, Takeshi Shinohara Matching of Programs for Protecting Libre Software

Appendix

SSA Example
Another Slice Expansion Example
Distance Match
Other Experiments

4 Appendix
SSA Example
Another Slice Expansion Example
Distance Match
Other Experiments

Arnoldo Müller, Takeshi Shinohara Matching of Programs for Protecting Libre Software

Appendix

SSA Example
Another Slice Expansion Example
Distance Match
Other Experiments

Outline

4 Appendix
SSA Example
Another Slice Expansion Example
Distance Match
Other Experiments

Arnoldo Müller, Takeshi Shinohara Matching of Programs for Protecting Libre Software

SSA (Single Static Assignment)
One assignment per variable. “Phi” is a selection function

f(int i){
int res,count = 1;
while(count <= i){
res = res*count;
count++;
}
return res;
}

i0 = i

res = 1

count = 1

block_0:

count_1 = Phi(count, count_2)

res_1 = Phi(res, res_2)

if count_1 > i0 goto block_1

res_2 = res_1 * count_1

count_2 = count_1 + 1

goto block_0

block_1:

return res_1

i0 = i

res = 1

count = 1

block_0:

count_1 = Phi(count, count_2)

res_1 = Phi(res, res_2)

if count_1 > i0 goto block_1

res_2 = res_1 * count_1

count_2 = count_1 + 1

goto block_0

block_1:

return res_1

Appendix

SSA Example
Another Slice Expansion Example
Distance Match
Other Experiments

Outline

4 Appendix
SSA Example
Another Slice Expansion Example
Distance Match
Other Experiments

Arnoldo Müller, Takeshi Shinohara Matching of Programs for Protecting Libre Software

Slice Expansion Example
Slice res_1 to be expanded

res_1 = Phi(res, res_2)

res = 1

block_0:

if count_1 > i0 goto block_1

res_2 = res_1 * count_1

count_2 = count_1 + 1

goto block_0

block_1:

return res_1

res_1 = Phi(res, res_2)

i0 = i

count_1 = Phi(count, count_2)

count = 1

Slice Expansion Example
Slice res_1 to be expanded

res_1=Phi(res, res_2)

res_1=Phi(1, res_1 * count_1)
i0 = i

res = 1

block_0:

count_1 = Phi(count, count_2)

res_1 = Phi(res, res_2)

if count_1 > i0 goto block_1

res_2 = res_1 * count_1

count_2 = count_1 + 1

goto block_0

block_1:

return res_1

count = 1

Slice Expansion Example
Slice res_1 to be expanded

res_1=Phi(res, res_2)

Slice already expanded, we expand only once

res_1=Phi(1, res_1 * count_1)

res_1=Phi(1, res_1 * Phi(count, count_2)

i0 = i

res = 1

count = 1

block_0:

count_1 = Phi(count, count_2)

res_1 = Phi(res, res_2)

if count_1 > i0 goto block_1

res_2 = res_1 * count_1

count_2 = count_1 + 1

goto block_0

block_1:

return res_1

Slice Expansion Example
Slice res_1 to be expanded

res_1=Phi(1, res_1 * count_1)

res_1=Phi(res, res_2)

res_1=Phi(1, res_1 * Phi(count, count_2)

res_1=Phi(1, res_1 * Phi(1, count_1 + 1)

i0 = i

res = 1

count = 1

block_0:

count_1 = Phi(count, count_2)

res_1 = Phi(res, res_2)

if count_1 > i0 goto block_1

res_2 = res_1 * count_1

count_2 = count_1 + 1

goto block_0

block_1:

return res_1

Appendix

SSA Example
Another Slice Expansion Example
Distance Match
Other Experiments

Outline

4 Appendix
SSA Example
Another Slice Expansion Example
Distance Match
Other Experiments

Arnoldo Müller, Takeshi Shinohara Matching of Programs for Protecting Libre Software

Appendix

SSA Example
Another Slice Expansion Example
Distance Match
Other Experiments

toList Procedure

• all the subexpressions that can be created
from a slice

• Adds a parameterless copy per each
subexpression

toList(sum(localRef(3), num(2))) =
[sum(localRef(3), num(2)), sum(), localRef(3),
localRef(), num(2), num()]

Arnoldo Müller, Takeshi Shinohara Matching of Programs for Protecting Libre Software

Appendix

SSA Example
Another Slice Expansion Example
Distance Match
Other Experiments

dmatch Procedure

dmatch : E × E → N
dmatch(e1, e2) =
(slength(e1)+slength(e2))−(2∗|toList(e1)∩toList(e2)|)

2

1) f(g(number(2), localRef(h(g(x))), localRef(y)))

2) f(...)

3) g(number(2), localRef(h(g(x))))

4) g(...)

5) number(2)

6) number(...)

7) localRef(h(g(x))

8) localRef(...)

9) localRef(y)

10) localRef(...)

1) g(f(number(2), localRef(u)), localRef(x))

2) g(...)

3) f(number(2), localRef(u))

4) f(...)

5) localRef(x)

6) localRef(...)

7) number(2)

8) number(...)

9) localRef(u)

10) localRef(...)

Distance: ((10 + 10) − (2 * 8)) / 2 = 2

Arnoldo Müller, Takeshi Shinohara Matching of Programs for Protecting Libre Software

1) f(g(number(2), localRef(h(g(x))), localRef(y)))

2) f(...)

3) g(number(2), localRef(h(g(x))))

4) g(...)

5) number(2)

6) number(...)

7) localRef(h(g(x))

8) localRef(...)

9) localRef(y)

10) localRef(...)

1) g(f(number(2), localRef(u)), localRef(x))

2) g(...)

3) f(number(2), localRef(u))

4) f(...)

5) localRef(x)

6) localRef(...)

7) number(2)

8) number(...)

9) localRef(u)

10) localRef(...)

Distance: ((10 + 10) − (2 * 8)) / 2 = 2

Appendix

SSA Example
Another Slice Expansion Example
Distance Match
Other Experiments

Outline

4 Appendix
SSA Example
Another Slice Expansion Example
Distance Match
Other Experiments

Arnoldo Müller, Takeshi Shinohara Matching of Programs for Protecting Libre Software

Appendix

SSA Example
Another Slice Expansion Example
Distance Match
Other Experiments

dmatch Procedure

Arnoldo Müller, Takeshi Shinohara Matching of Programs for Protecting Libre Software

Effects of changing
ignore_slices_lower_than
Database 18 Apps jdk 1.5

slice_cut_threshold=30
ignore_slices_lower_than=4
maximum_acceptable_distance=1
Matching: jfreechart (Jikes 1.22)
App Name Score
jfreechart 0.828
freesudoku 0.227
htmlparser 0.188
jgnash 0.157
checkstyle 0.115
freemind 0.109
pdfbox 0.100
findbugs 0.084
triplea 0.079
jmusic 0.076
jasperreports 0.076
schemaspy 0.057
ireport 0.049
yale 0.033
azureus 0.028

slice_cut_threshold=30
ignore_slices_lower_than=15
maximum_acceptable_distance=1
Matching: jfreechart (Jikes 1.22)
App Name Score
jfreechart 0.739
freesudoku 0.009
jgnash 0.008
jmusic 0.001
jasperreports 0.001
ireport 0.001
checkstyle 0.001
findbugs 0.001
yale 0.001
azureus 0.000

Matching control flow obfuscated
Programs
Database 18 Apps jdk 1.5

slice_cut_threshold=30
ignore_slices_lower_than=15
maximum_acceptable_distance=1
Flow obfuscate String decryption: off
Matching: freemind
JDK 1.5 + ZKM (full)
App Name Score
freemind 0.518
checkstyle 0.020
jgnash 0.012
jfreechart 0.006
ireport 0.004
triplea 0.004
htmlparser 0.002
jmusic 0.002
azureus 0.001
findbugs 0.001
pdfbox 0.001
yale 0.001
jacksum 0.000

slice_cut_threshold=30
ignore_slices_lower_than=15
maximum_acceptable_distance=1
Flow obfuscate String decryption: on
Matching: freemind
JDK 1.5 + ZKM (full)
App Name Score
freemind 0.122
checkstyle 0.013
jgnash 0.012
ireport 0.006
htmlparser 0.003
pdfbox 0.003
findbugs 0.002
azureus 0.001
jasperreports 0.001
jmusic 0.001
yale 0.001
jacksum 0.000

Smoke Screen Obfuscator
Database of 18 Apps jdk 1.5

slice_cut_threshold=30
ignore_slices_lower_than=15
maximum_acceptable_distance=3
Matching: jacksum
JDK 1.5 + smoke screen (full options)
App Name Score
jacksum 0.804
azureus 0.086
checkstyle 0.017
jgnash 0.012
jasperreports 0.011
findbugs 0.009
htmlparser 0.007
ireport 0.006
pdfbox 0.006
triplea 0.005
yale 0.004
jfreechart 0.003
schemaspy 0.003
jmemorize 0.003
smallexample 0.003
jmusic 0.002
freemind 0.001
freesudoku 0.000

Matching freesudoku and jmusic
Database of 269 App (Different compilers)

slice_cut_threshold=30
ignore_slices_lower_than=15
maximum_acceptable_distance=1
Matching: freesudoku (JDK 1.5)
App Name Score
freesudoku 0.900
JAMonAll_020106 0.040
nachocalendar-0.23 0.015
jwebunit-1.2 0.013
jin-2.13.1-unix 0.009
ejb3unit-1.0-alpha2 0.009
siscweb-bin-0.32 0.009
matharcade-1.2 0.007
HTCommunicator_0.1 0.005
transform-2.1 0.005
polliwog-bin-stable-0.5 0.001
esper-0.7.0 0.001
Furthur175 0.001
cayenne-1.2M10 0.000

slice_cut_threshold=30
ignore_slices_lower_than=15
maximum_acceptable_distance=1
Matching: jmusic (JDK 1.5 + ZKM (full))
App Name Score
jmusic 0.085
jquery-2006-Jan-07-dist 0.030
jreversepro-1.4.1-bin 0.028
coinjema-0.4 0.025
mobup_client_0.3.2 0.015
iHTbot-0.5.1b2 0.012
jmsn-0.9.9b2 0.011
fitdecorator-beta0.2 0.009
jopt_csp_1-0 0.008
etl-1.0-full 0.008
regexSearch-1_2 0.007
jwp_v1.0_beta4_bin 0.007
cap4j-0.1.2-beta 0.005
freemind 0.005

Effects of changing
maximum_acceptable_distance
Database of 363 App (Various Compilers)

slice_cut_threshold=30
ignore_slices_lower_than=15
maximum_acceptable_distance=1
Matching: freesudoku (JDK 1.5 ZKM full)
App Name Score
freesudoku 0.108
DocSearcher-3.88 0.018
jnetstream 0.018
BlinkenApplet0.7 0.017
jgames-0.9.2 0.015

slice_cut_threshold=30
ignore_slices_lower_than=15
maximum_acceptable_distance=3
Matching: freesudoku (JDK 1.5 ZKM full)
App Name Score
freesudoku 0.31
DocSearcher-3.88 0.020
jnetstream 0.020
jgames-0.9.2 0.020
ocl4javaLib_2.1.7 0.010

	Introduction
	Motivation
	Related Work

	Approximate Matching of Programs
	Slices
	Implementation
	Next Steps!

	Summary
	Appendix
	Appendix
	SSA Example
	Another Slice Expansion Example
	Distance Match
	Other Experiments

