A Tree Distance Function Based on Multi-sets

Protecting Open Source Software with Trees

A. Müller K. Hirata T. Shinohara

Department of Artificial Intelligence Kyushu Institute of Technology (lizuka, Japan)

ALSIP 2008 (Osaka, Japan)

Müller, Hirata, Shinohara (KIT) Tree Distance Function Based on Multi-sets

ALSIP 2008 1 / 28

Outline

- 1
- Introduction
- Motivation: Binary Program Matching
- Proposed Tree Distance Function
 - Concepts
 - Related Works
 - Distance Definition
 - Examples
 - Characteristics
 - Case Study
 - Setup
 - Results

Müller, Hirata, Shinohara (KIT)

Tree structured data, main contributions

• XML, RNA structures

- Approximate Binary Program Matching (ABPM)
 - Detect program theft (OSS license violations)
 - Detect common low level functionality
- Metrics are desirable:

• $d(T_1, T_2) = 0 \iff T_1 = T_2$

- Triangle inequality (MAM can be employed)
- Formalized an *O*(*n*²) metric (*mtd*) proposed before. Müller, Shinohara (2006)
 - Other functions are not suitable for ABPM
 - Designed for ABPM
 - Experimentally studied properties

Tree structured data, main contributions

- XML, RNA structures
- Approximate Binary Program Matching (ABPM)
 - Detect program theft (OSS license violations)
 - Detect common low level functionality
- Metrics are desirable:

• $d(T_1, T_2) = 0 \iff T_1 = T_2$

- Triangle inequality (MAM can be employed)
- Formalized an *O*(*n*²) metric (*mtd*) proposed before. Müller, Shinohara (2006)
 - Other functions are not suitable for ABPM
 - Designed for ABPM
 - Experimentally studied properties

Tree structured data, main contributions

- XML, RNA structures
- Approximate Binary Program Matching (ABPM)
 - Detect program theft (OSS license violations)
 - Detect common low level functionality
- Metrics are desirable:
 - $d(T_1, T_2) = 0 \iff T_1 = T_2$
 - Triangle inequality (MAM can be employed)
- Formalized an *O*(*n*²) metric (*mtd*) proposed before. Müller, Shinohara (2006)
 - Other functions are not suitable for ABPM
 - Designed for ABPM
 - Experimentally studied properties

Tree structured data, main contributions

- XML, RNA structures
- Approximate Binary Program Matching (ABPM)
 - Detect program theft (OSS license violations)
 - Detect common low level functionality
- Metrics are desirable:
 - $d(T_1, T_2) = 0 \iff T_1 = T_2$
 - Triangle inequality (MAM can be employed)
- Formalized an O(n²) metric (mtd) proposed before. Müller, Shinohara (2006)
 - Other functions are not suitable for ABPM
 - Designed for ABPM
 - Experimentally studied properties

Outline

Introduction

- Motivation: Binary Program Matching
- 2) Proposed Tree Distance Function
 - Concepts
 - Related Works
 - Distance Definition
 - Examples
 - Characteristics
 - Case Study
 - Setup
 - Results
 - Conclusions

Müller, Hirata, Shinohara (KIT)

Output: machine instruction trees

Complete Subtrees required

Deeper change, greater semantic change

- Output: machine instruction trees
- Complete Subtrees required
- Deeper change, greater semantic change

EX 4 EX

Outline

Introduction Motivation: Binary Program Matching Proposed Tree Distance Function Concepts **Related Works** Distance Definition • Examples Characteristics Case Study Setup Results Conclusions

Concepts

Concepts employed during the presentation

Multi-set additive union: H • $\{A, A, B\} \uplus \{A, B, C\} = \{A, A, A, B, B, C\}$

- Multi-set union: II
- $\{A, A, B\} \sqcup \{A, B, C\} = \{A, A, B, C\}$ Multi-set intersection:
 - $\{A, A, B\} \sqcap \{A, B, C\} = \{A, B\}$

Let T be a tree and v a node in T.

A *complete subtree* of T at v is a subtree of T of which its root is v and that contains all descendants of V.

Complete subtree preserves semantics.

Tree Distance Function Based on Multi-sets Müller, Hirata, Shinohara (KIT)

ALSIP 2008 8/28

Concepts

Concepts employed during the presentation

Multi-set additive union: H

• $\{A, A, B\} \uplus \{A, B, C\} = \{A, A, A, B, B, C\}$

- Multi-set union: II
 - $\{A, A, B\} \sqcup \{A, B, C\} = \{A, A, B, C\}$
- Multi-set intersection:
 - $\{A, A, B\} \sqcap \{A, B, C\} = \{A, B\}$

Let T be a tree and v a node in T.

A *complete subtree* of T at v is a subtree of T of which its root is v and that contains all descendants of V.

Complete subtree preserves semantics.

Tree Distance Function Based on Multi-sets Müller, Hirata, Shinohara (KIT)

ALSIP 2008 8/28

Concepts

Concepts employed during the presentation

Multi-set additive union: H

• $\{A, A, B\} \uplus \{A, B, C\} = \{A, A, A, B, B, C\}$

- Multi-set union: II
 - $\{A, A, B\} \sqcup \{A, B, C\} = \{A, A, B, C\}$
- Multi-set intersection: □
 - $\{A, A, B\} \sqcap \{A, B, C\} = \{A, B\}$

Let T be a tree and v a node in T.

A *complete subtree* of T at v is a subtree of T of which its root is v and that contains all descendants of V.

Complete subtree preserves semantics.

Tree Distance Function Based on Multi-sets Müller, Hirata, Shinohara (KIT)

ALSIP 2008 8/28

Concepts

Concepts employed during the presentation

Multi-set additive union: H

• $\{A, A, B\} \uplus \{A, B, C\} = \{A, A, A, B, B, C\}$

- Multi-set union: II
 - $\{A, A, B\} \sqcup \{A, B, C\} = \{A, A, B, C\}$
- Multi-set intersection: □
 - $\{A, A, B\} \sqcap \{A, B, C\} = \{A, B\}$

Definition

Let T be a tree and v a node in T.

A *complete subtree* of T at v is a subtree of T of which its root is v and that contains all descendants of v.

Complete subtree preserves semantics

Müller, Hirata, Shinohara (KIT) Tree Distance Function Based on Multi-sets

Outline

Introduction Motivation: Binary Program Matching Proposed Tree Distance Function Concepts Related Works Distance Definition • Examples Characteristics Case Study Setup

- Results
- Conclusions

Müller, Hirata, Shinohara (KIT)

Overview

Distance Functions

• TED Tai (1979)

- Insert, delete, rename operations
- Minimum edit script
- Fastest Algorithm: $O(n^3)$. Demaine *et al.*(2007)
- Changes are treated equally, not good for ABPM
- Extension of edit operations. Chawathe *et al.*(1997)
 - Operations on subtrees: move, copy, glue (inverse of copy)
 - NP-Complete, Heuristic $O(n^3)$
 - Not a metric

ALSIP 2008 10 / 28

・四・・ モ・・ モート

Overview

Distance Functions

• TED Tai (1979)

- Insert, delete, rename operations
- Minimum edit script
- Fastest Algorithm: $O(n^3)$. Demaine *et al.*(2007)
- Changes are treated equally, not good for ABPM
- Extension of edit operations. Chawathe *et al.*(1997)
 - Operations on subtrees: move, copy, glue (inverse of copy)

A B A A B A

ALSIP 2008

10/28

- NP-Complete, Heuristic $O(n^3)$
- Not a metric

Overview (2)

Distance Functions

• Constrained edit distance: Wang, Zhang (2005)

- Like ted but equal subtrees are matched first
- *O*(*n*²), complete subtrees not preserved
- N-Gram Based: Yang *et al.*(2005), Ohkura *et al.*(2004)
 - Partition trees, match those parts
 - Semantics are lost
 - O(n)
- No suitable distance functions available, we implemented *mtd*

ALSIP 2008 11 / 28

Overview (2)

Distance Functions

• Constrained edit distance: Wang, Zhang (2005)

- Like ted but equal subtrees are matched first
- $O(n^2)$, complete subtrees not preserved
- N-Gram Based: Yang et al.(2005), Ohkura et al.(2004)
 - Partition trees, match those parts
 - Semantics are lost
 - O(n)
- No suitable distance functions available, we implemented *mtd*

ALSIP 2008 11 / 28

Overview (2)

Distance Functions

• Constrained edit distance: Wang, Zhang (2005)

- Like ted but equal subtrees are matched first
- $O(n^2)$, complete subtrees not preserved
- N-Gram Based: Yang et al.(2005), Ohkura et al.(2004)
 - Partition trees, match those parts
 - Semantics are lost
 - O(n)
- No suitable distance functions available, we implemented *mtd*

ALSIP 2008 11 / 28

Outline

Motivation: Binary Program Matching Proposed Tree Distance Euroption

- Proposed Tree Distance Function
 - Concepts

Introduction

- Related Works
- Distance Definition
- Examples
- Characteristics
- Case Study
 - Setup
 - Results
- Conclusions

Müller, Hirata, Shinohara (KIT)

★ ∃ >

mtd

Tree distance function based on multi-sets

s(T): multi-set of all complete subtrees of T
n(T): multi-set of all the nodes of T

$$\delta(\boldsymbol{A},\boldsymbol{B}) = |\boldsymbol{A} \sqcup \boldsymbol{B}| - |\boldsymbol{A} \sqcap \boldsymbol{B}|, \tag{1}$$

$$d_{s}(T_{1}, T_{2}) = \delta(s(T_{1}), s(T_{2})), \qquad (2)$$

$$d_n(T_1, T_2) = \delta(n(T_1), n(T_2)),$$
 (3)

$$mtd(T_1, T_2) = \frac{d_s(T_1, T_2) + d_n(T_1, T_2)}{2}$$
 (4)

Examples

Outline

Introduction Motivation: Binary Program Matching Proposed Tree Distance Function Concepts **Related Works** Distance Definition Examples Characteristics Case Study Setup Results Conclusions

Müller, Hirata, Shinohara (KIT)

 $s(T_1) = \{A(B, C(E, F(G)), D), B, C(E, F(G)), E, F(G), G, D\}$ $s(T_2) = \{H(B, D, C(E, F(G))), B, C(E, F(G)), E, F(G), G, D\}$ $n(T_1) = \{A, B, C, E, F, G, D\}$ $n(T_2) = \{H, B, C, E, F, G, D\}$

 $|s(T_1) \sqcap s(T_2)| = 6$ $mtd(T_1, T_2) = \frac{(8-6)+(8-6)}{2} = 2$ $|n(T_1) \sqcap n(T_2)| = 6$ $ted(T_1, T_2) = 3$

- $n(T_4) = \{A, B, F, C, G, E\}$ $|s(T_3) \sqcap s(T_4)| = 2$ mtd $(T_3, T_4) = \frac{(10-2)+(7-5)}{2} = 5$ $|n(T_3) \sqcap n(T_4)| = 5$ ted $(T_3, T_4) = 1$
 - Complete subtrees are necessary

く 同 ト く ヨ ト く ヨ ト

Outline

IntroductionMotivation: Binary Program Matching

Proposed Tree Distance Function

- Concepts
- Related Works
- Distance Definition
- Examples

Characteristics

- Case Study
 - Setup
 - Results

Conclusions

Müller, Hirata, Shinohara (KIT)

★ ∃ >

Characteristics of mtd

- *mtd* is an $O(n^2)$ metric
- Result is always in \mathbb{N}
- *d_n* same root nodes, different children
- *d_s* preserves semantic chunks of expressions
- *d_s*: very sensitive to changes
- *d_n*: trees become close to each other
- Is the average between *d_s* and *d_n* useful?
 - Approximate program matching: only d_s is enough
 - Minimum and maximum values become smaller

< ロ > < 同 > < 回 > < 回 >

Characteristics of mtd

- *mtd* is an $O(n^2)$ metric
- Result is always in \mathbb{N}
- *d_n* same root nodes, different children
- *d_s* preserves semantic chunks of expressions
- *d_s*: very sensitive to changes
- *d_n*: trees become close to each other
- Is the average between *d_s* and *d_n* useful?
 - Approximate program matching: only d_s is enough
 - Minimum and maximum values become smaller

Characteristics of mtd

- *mtd* is an $O(n^2)$ metric
- Result is always in \mathbb{N}
- *d_n* same root nodes, different children
- *d_s* preserves semantic chunks of expressions
- *d_s*: very sensitive to changes
- *d_n*: trees become close to each other
- Is the average between *d_s* and *d_n* useful?
 - Approximate program matching: only d_s is enough
 - Minimum and maximum values become smaller

Characteristics of mtd

- *mtd* is an $O(n^2)$ metric
- Result is always in \mathbb{N}
- *d_n* same root nodes, different children
- *d_s* preserves semantic chunks of expressions
- *d_s*: very sensitive to changes
- *d_n*: trees become close to each other
- Is the average between *d_s* and *d_n* useful?
 - Approximate program matching: only *d_s* is enough
 - Minimum and maximum values become smaller

< 回 > < 三 > < 三 >

Setup

Outline

- Introduction
 - Motivation: Binary Program Matching
- Proposed Tree Distance Function
 - Concepts
 - Related Works
 - Distance Definition
 - Examples
 - Characteristics
 - Case Study
 - Setup
 - Results
 - Conclusions

∃ ▶ ∢

Setup Experiment Definition

- 244668 trees
- Average depth: 4.75
- Average number of nodes: 11.11
- Randomly selected 1000 trees (queries)
 - Compare them against the dataset
- Distance functions:
 - ted O(n³) Demaine (2007), BDist O(n) Yang (2005), mtd O(n²)
 - Intel(R) Xeon(R) CPU 2.66 G-Hz with 4 processors

Setup

Distribution between data and queries

Distance Distribution

ALSIP 2008 21 / 28

A b

Outline

- Introduction
 - Motivation: Binary Program Matching
- Proposed Tree Distance Function
 - Concepts
 - Related Works
 - Distance Definition
 - Examples
 - Characteristics
 - Case Study
 - Setup
 - Results
 - Conclusions

∃ ▶ ∢

Results

Variation of mtd and BDist

On average similar, but *mtd* is a metric

ALSIP 2008 23 / 28

Results

Variation of d_s and d_n

On average *d_n* is closer to *ted*!

Results

Comparing d_n , d_s and *mtd*

ALSIP 2008 25 / 28

Benchmarks

Execution time results

- Queries: 1000
- DB: 244668

Function	Total	Per Function Call	Improvement over ted
mtd	7.4 min.	0.001 millisec.	689x
BDist	8 min.	0.001 millisec.	637x
ted	85 hr.	1 millisec.	1x

• SMAP + Spatial Index / High Dimensional Index

Müller, Hirata, Shinohara (KIT) Tree Distance Function Based on Multi-sets

ALSIP 2008 26 / 28

Benchmarks

Execution time results

- Queries: 1000
- DB: 244668

Function	Total	Per Function Call	Improvement over ted
mtd	7.4 min.	0.001 millisec.	689x
BDist	8 min.	0.001 millisec.	637x
ted	85 hr.	1 millisec.	1x

• SMAP + Spatial Index / High Dimensional Index

ALSIP 2008 26 / 28

Results

OBSearch!

Open Source Metric Access Method (MAM)

- Nearest neighbor
- S-Map and P+Tree
- GPL 2.0
- http://obsearch.net

ALSIP 2008 27 / 28

Conclusions

mtd is fast, and very sensitive to changes.

- Introduced an $O(n^2)$ metric, *mtd*
 - Tuned to perform ABPM
- Our implementation is as fast as *BDist*
- Suffix trees can make *mtd O*(*n*), Vishwanathan (2002)
- Future work:
 - Analyze other distance functions (ABPM)
 - Comparison with other bottom-up distances

Conclusions

mtd is fast, and very sensitive to changes.

- Introduced an $O(n^2)$ metric, *mtd*
 - Tuned to perform ABPM
- Our implementation is as fast as *BDist*
- Suffix trees can make *mtd O(n)*, Vishwanathan (2002)
- Future work:
 - Analyze other distance functions (ABPM)
 - Comparison with other bottom-up distances

Conclusions

mtd is fast, and very sensitive to changes.

- Introduced an $O(n^2)$ metric, *mtd*
 - Tuned to perform ABPM
- Our implementation is as fast as *BDist*
- Suffix trees can make *mtd O(n)*, Vishwanathan (2002)
- Future work:
 - Analyze other distance functions (ABPM)
 - Comparison with other bottom-up distances

< 6 b

A B F A B F

ALSIP 2008

28/28