
Fast Approximate Matching of Programs for
Protecting Libre/Open Source Software by Using

Spatial Indexes

Arnoldo Müller Takeshi Shinohara

Department of Artificial Intelligence
Kyushu Institute of Technology (Iizuka, Japan)

SCAM 2007

Arnoldo Müller, Takeshi Shinohara Fast Approximate Matching of Programs

Libre/ Open Source Software
Protect Libre Software!

• FLOSS (Free/Libre Open Source Software).
• Copy-left. (GPL)
• Licensing Violations.

• FSF and GPL-violations.
• Using “strings” (binutils).

• Objective: Binary Program Matching.
• Different Compilers/Obfuscators/Strings.
• Return the top n most similar programs.
• Detect License Violations.

Arnoldo Müller, Takeshi Shinohara Fast Approximate Matching of Programs

Libre/ Open Source Software
Protect Libre Software!

• FLOSS (Free/Libre Open Source Software).
• Copy-left. (GPL)
• Licensing Violations.

• FSF and GPL-violations.
• Using “strings” (binutils).

• Objective: Binary Program Matching.
• Different Compilers/Obfuscators/Strings.
• Return the top n most similar programs.
• Detect License Violations.

Arnoldo Müller, Takeshi Shinohara Fast Approximate Matching of Programs

Libre/ Open Source Software
Protect Libre Software!

• FLOSS (Free/Libre Open Source Software).
• Copy-left. (GPL)
• Licensing Violations.

• FSF and GPL-violations.
• Using “strings” (binutils).

• Objective: Binary Program Matching.
• Different Compilers/Obfuscators/Strings.
• Return the top n most similar programs.
• Detect License Violations.

Arnoldo Müller, Takeshi Shinohara Fast Approximate Matching of Programs

Libre/ Open Source Software
Protect Libre Software!

• FLOSS (Free/Libre Open Source Software).
• Copy-left. (GPL)
• Licensing Violations.

• FSF and GPL-violations.
• Using “strings” (binutils).

• Objective: Binary Program Matching.
• Different Compilers/Obfuscators/Strings.
• Return the top n most similar programs.
• Detect License Violations.

Arnoldo Müller, Takeshi Shinohara Fast Approximate Matching of Programs

Expanded Fragment:

count_1 = Phi(1, count_1 + 1)

i0 = i

res = 1

count = 1

block_0:

res_1 = Phi(res, res_2)

if count_1 > i0 goto block_1

res_2 = res_1 * count_1

count_2 = count_1 + 1

goto block_0

block_1:

return res_1

count_1 = Phi(count, count_2)

count_1 = Phi(count, count_2)

• Output: machine instruction trees.
• Matched with a distance function d .
• Ignore strings, function names.

Fast Matching With Spatial Indexes
Select pivots, create a tuple based on d .

• Similarity search:
• M-tree & friends: slow for d .
• Vectors: B-tree (1 dim) or Spatial Index.

• Trees cannot be indexed directly.
• SMAP can be used to index them:

• Select i pivots p1 . . . pi from the database.
• Create a tuple (d(o, p1), . . . , d(o, pi)) for each

object o.
• Calculate lower bound with L∞ distance.

• This tuple can be stored in the Spatial
Index!

Arnoldo Müller, Takeshi Shinohara Fast Approximate Matching of Programs

Fast Matching With Spatial Indexes
Select pivots, create a tuple based on d .

• Similarity search:
• M-tree & friends: slow for d .
• Vectors: B-tree (1 dim) or Spatial Index.

• Trees cannot be indexed directly.
• SMAP can be used to index them:

• Select i pivots p1 . . . pi from the database.
• Create a tuple (d(o, p1), . . . , d(o, pi)) for each

object o.
• Calculate lower bound with L∞ distance.

• This tuple can be stored in the Spatial
Index!

Arnoldo Müller, Takeshi Shinohara Fast Approximate Matching of Programs

Fast Matching With Spatial Indexes
Select pivots, create a tuple based on d .

• Similarity search:
• M-tree & friends: slow for d .
• Vectors: B-tree (1 dim) or Spatial Index.

• Trees cannot be indexed directly.
• SMAP can be used to index them:

• Select i pivots p1 . . . pi from the database.
• Create a tuple (d(o, p1), . . . , d(o, pi)) for each

object o.
• Calculate lower bound with L∞ distance.

• This tuple can be stored in the Spatial
Index!

Arnoldo Müller, Takeshi Shinohara Fast Approximate Matching of Programs

Fast Matching With Spatial Indexes
Select pivots, create a tuple based on d .

• Similarity search:
• M-tree & friends: slow for d .
• Vectors: B-tree (1 dim) or Spatial Index.

• Trees cannot be indexed directly.
• SMAP can be used to index them:

• Select i pivots p1 . . . pi from the database.
• Create a tuple (d(o, p1), . . . , d(o, pi)) for each

object o.
• Calculate lower bound with L∞ distance.

• This tuple can be stored in the Spatial
Index!

Arnoldo Müller, Takeshi Shinohara Fast Approximate Matching of Programs

Fast Matching With Spatial Indexes
Select pivots, create a tuple based on d .

• Similarity search:
• M-tree & friends: slow for d .
• Vectors: B-tree (1 dim) or Spatial Index.

• Trees cannot be indexed directly.
• SMAP can be used to index them:

• Select i pivots p1 . . . pi from the database.
• Create a tuple (d(o, p1), . . . , d(o, pi)) for each

object o.
• Calculate lower bound with L∞ distance.

• This tuple can be stored in the Spatial
Index!

Arnoldo Müller, Takeshi Shinohara Fast Approximate Matching of Programs

Synopsis of the Paper
Tackle performance and precision issues

• Matching one program was slow (3 days):
• 10 hours (7x) (Tree parsing, d).
• 6 min (682x) (Spatial Index + SMAP).

• Previous ranking technique was not
precise:

• 22% of the time correct.
• Improved to 96% (IR).

• Experiments:
• DB:1670 programs.
• Whole program matching. Max. obfuscation.
• Query sets: (Default 1290 100%) (ZKM 290

100%) (Sandmark 280 96%)

Arnoldo Müller, Takeshi Shinohara Fast Approximate Matching of Programs

Synopsis of the Paper
Tackle performance and precision issues

• Matching one program was slow (3 days):
• 10 hours (7x) (Tree parsing, d).
• 6 min (682x) (Spatial Index + SMAP).

• Previous ranking technique was not
precise:

• 22% of the time correct.
• Improved to 96% (IR).

• Experiments:
• DB:1670 programs.
• Whole program matching. Max. obfuscation.
• Query sets: (Default 1290 100%) (ZKM 290

100%) (Sandmark 280 96%)

Arnoldo Müller, Takeshi Shinohara Fast Approximate Matching of Programs

Synopsis of the Paper
Tackle performance and precision issues

• Matching one program was slow (3 days):
• 10 hours (7x) (Tree parsing, d).
• 6 min (682x) (Spatial Index + SMAP).

• Previous ranking technique was not
precise:

• 22% of the time correct.
• Improved to 96% (IR).

• Experiments:
• DB:1670 programs.
• Whole program matching. Max. obfuscation.
• Query sets: (Default 1290 100%) (ZKM 290

100%) (Sandmark 280 96%)

Arnoldo Müller, Takeshi Shinohara Fast Approximate Matching of Programs

Thank you!
Contact Information

• Arnoldo Müller
• arnoldoMuller@gmail.com
• arnoldo@daisy.ai.kyutech.ac.jp

• For a tree (and anything else) matcher:
• http://obsearch.berlios.de/

Arnoldo Müller, Takeshi Shinohara Fast Approximate Matching of Programs

Appendix

Distance of Fragments

Example (Trees a(b, c) and a(b, d))
Multi-set:

d(a(b, c), a(b, d)) =

(6+6)−(2×3)
2 = 3

Arnoldo Müller, Takeshi Shinohara Fast Approximate Matching of Programs

Appendix

Distance of Fragments

Example (Trees a(b, c) and a(b, d))
Multi-set:

d(a(b, c), a(b, d)) =

(6+6)−(2×3)
2 = 3

Arnoldo Müller, Takeshi Shinohara Fast Approximate Matching of Programs

Appendix

Matching Techniques Employed
Spatial Indexes

• Spatial Indexes work in Euclidean spaces.
• Trees cannot be indexed directly.
• SMAP can be used to index them:

• Select i pivots p1 . . . pi from the database.
• Create a tuple (d(o, p1), . . . , d(o, pi)) for each

object o.

• This tuple can be indexed in the spatial
index!

Arnoldo Müller, Takeshi Shinohara Fast Approximate Matching of Programs

Appendix

Matching Techniques Employed
Spatial Indexes

• Spatial Indexes work in Euclidean spaces.
• Trees cannot be indexed directly.
• SMAP can be used to index them:

• Select i pivots p1 . . . pi from the database.
• Create a tuple (d(o, p1), . . . , d(o, pi)) for each

object o.

• This tuple can be indexed in the spatial
index!

Arnoldo Müller, Takeshi Shinohara Fast Approximate Matching of Programs

Appendix

Matching Techniques Employed
Spatial Indexes

• Spatial Indexes work in Euclidean spaces.
• Trees cannot be indexed directly.
• SMAP can be used to index them:

• Select i pivots p1 . . . pi from the database.
• Create a tuple (d(o, p1), . . . , d(o, pi)) for each

object o.

• This tuple can be indexed in the spatial
index!

Arnoldo Müller, Takeshi Shinohara Fast Approximate Matching of Programs

Appendix

Matching Techniques Employed
Sequential Search

• Tree creation is a heavy task.
• Parse a string into a tree.

• Load all the trees into memory? No!
• Match the database against the query.
• Fragments of size differing in more than r

ignored.

Arnoldo Müller, Takeshi Shinohara Fast Approximate Matching of Programs

Appendix

Matching Techniques Employed
Sequential Search

• Tree creation is a heavy task.
• Parse a string into a tree.

• Load all the trees into memory? No!
• Match the database against the query.
• Fragments of size differing in more than r

ignored.

Arnoldo Müller, Takeshi Shinohara Fast Approximate Matching of Programs

Appendix

Program Ranking
Naive calculation replaced by information retrieval ranking

• For an application a and a query q:
• Naive calculation: |q∩a|

|a| (NR).
• “Rareness” of fragments not taken into

account.
• Distribution of the fragments in q and a

ignored.
• Information retrieval techniques (IR).

• Consider all this and more.
• Employed Lucene (open source information

retrieval software).

Arnoldo Müller, Takeshi Shinohara Fast Approximate Matching of Programs

Appendix

Program Ranking
Naive calculation replaced by information retrieval ranking

• For an application a and a query q:
• Naive calculation: |q∩a|

|a| (NR).
• “Rareness” of fragments not taken into

account.
• Distribution of the fragments in q and a

ignored.
• Information retrieval techniques (IR).

• Consider all this and more.
• Employed Lucene (open source information

retrieval software).

Arnoldo Müller, Takeshi Shinohara Fast Approximate Matching of Programs

Appendix

Performance

• Database size: 340000 fragments (30 MB).
• Query size: 1641 fragments (100kb).
• Prototype written in C++.
• PRTREE : Spatial Index.
• SEQ: Sequential search.
• k : Retrieve closest k elements from DB.
• r : For query q retrieve only if d(q, j) ≤ r

where j ∈ DB.

Arnoldo Müller, Takeshi Shinohara Fast Approximate Matching of Programs

Pruning by tree size
Improvement in sequential search.

0
5000

10000
15000
20000
25000
30000
35000
40000

10/105/105/75/32/3

parameters k and r

Execution time in seconds

PRTREEn

PRTREE
SEQn

SEQ

Using cache
Using cache improves considerably performance

0

2000

4000

6000

8000

10000

12000

14000

16000

10/105/105/75/32/3

parameters k and r

Execution time in seconds

SEQncache

PRTREEncache

PRTREEn

Distance Computations
Distance computations are greatly reduced by PRTREE

0

5e+07

1e+08

1.5e+08

2e+08

2.5e+08

3e+08

3.5e+08

10/105/105/75/32/3

parameters k and r

Calculation count for d

PRTREEn

SEQn

Appendix

Triangle Inequality
Some notes:

• Exploit this:
• |d(x , y)− d(x , z)| ≤ d(y , z)

• L∞ for 2 vectors p and q:
• L∞ = maxi(|pi − qi |)

Arnoldo Müller, Takeshi Shinohara Fast Approximate Matching of Programs

Appendix

Preliminaries

• Programs downloaded from different
sources.

• Query sets constructed:
• A: byte-code as it was indexed.
• B: Zelix Klass Master 4.5.
• C: Sandmark 3.4.

Set Transformation # of Programs
A default 1293
B Zelix 290
C Sandmark 281

Arnoldo Müller, Takeshi Shinohara Fast Approximate Matching of Programs

Overall Results for IR
• %X : accum. % of identifications for set X .
• m(X): number of matches found for set X .

n %A m(A) %B m(B) %C m(C)
1 97.3 1259 96.8 281 87.5 246
2 98.8 19 99.6 8 90.7 9
3 99.3 7 100 1 92.1 4
4 99.8 6 – – 93.5 4
5 99.9 1 – – 94.6 3
6 99.9 0 – – 94.6 0
7 99.9 0 – – 95.0 1
8 99.9 0 – – 95.3 1
9 100 1 – – 95.7 1

10 – – – – 96.0 1

Overall Results for NR
• %X : accum. % of identifications for set X .
• m(X): number of matches found for set X .

n %A m(A) %B m(B) %C m(C)
1 18.2 236 4.4 13 9.6 27
2 33.2 194 15.8 33 12.8 9
3 49.1 206 25.5 28 14.2 4
4 59.0 127 33.4 23 16.0 5
5 65.1 80 40.0 19 17.7 5
6 69.9 61 45.5 16 18.1 1
7 73.7 50 51.0 16 19.5 4
8 77.4 48 54.1 9 20.6 3
9 80.6 41 58.2 12 21.3 2

10 83.6 38 62.4 12 22.7 4

Appendix

License Violation Detection Example
Embedded open source can be detected

• Query: “ccmtools”
• Returned:

• antlr-2.7.6-1jpp.noarch
• antlr-2.7.6-1jpp.noarch.rpm.jpackage
• antlr
• ccmtools

• “antlr” is actually embedded in ccmtools

Arnoldo Müller, Takeshi Shinohara Fast Approximate Matching of Programs

Appendix

Next Steps!

• Expression normalization.
• Normalization Learning?
• Syntactically close but semantically

different fragments.
• Other fragment extraction approaches.
• Detection of false negatives must be

implemented.

Arnoldo Müller, Takeshi Shinohara Fast Approximate Matching of Programs

Appendix

Summary

• A very simple and new technique has been
proposed.

• Fragment + Tree-distance + Ranking.
• Performance was substantially improved

• Use of Spatial Indexes + SMAP.
• Reliability improved

• By using information retrieval techniques.
• Possible applications:

• Low-level duplicated functionality detection.

Arnoldo Müller, Takeshi Shinohara Fast Approximate Matching of Programs

Appendix

Destroying our Technique
Ways of attacking our method

• Disable the extraction of SSA:
• Dynamic fragment extraction.

• Transform the Fragments:
• Modify assignment expressions.
• Many fragments must be changed/added (IR).
• Some fragments cause more damage than

others.
• Depends on IR equations (private).
• Depends on Database (frequency, private).

Arnoldo Müller, Takeshi Shinohara Fast Approximate Matching of Programs

Appendix

Destroying our Technique
Ways of attacking our method

• Disable the extraction of SSA:
• Dynamic fragment extraction.

• Transform the Fragments:
• Modify assignment expressions.
• Many fragments must be changed/added (IR).
• Some fragments cause more damage than

others.
• Depends on IR equations (private).
• Depends on Database (frequency, private).

Arnoldo Müller, Takeshi Shinohara Fast Approximate Matching of Programs

Appendix

Destroying our Technique
Ways of attacking our method

• Disable the extraction of SSA:
• Dynamic fragment extraction.

• Transform the Fragments:
• Modify assignment expressions.
• Many fragments must be changed/added (IR).
• Some fragments cause more damage than

others.
• Depends on IR equations (private).
• Depends on Database (frequency, private).

Arnoldo Müller, Takeshi Shinohara Fast Approximate Matching of Programs

Appendix

Destroying our Technique
Ways of attacking our method

• Disable the extraction of SSA:
• Dynamic fragment extraction.

• Transform the Fragments:
• Modify assignment expressions.
• Many fragments must be changed/added (IR).
• Some fragments cause more damage than

others.
• Depends on IR equations (private).
• Depends on Database (frequency, private).

Arnoldo Müller, Takeshi Shinohara Fast Approximate Matching of Programs

Appendix

Modifying fragments
Make d > r

• Fragments are trees.
• We use a range r to accept 2 fragments as

similar:
• d(a, b) ≤ r for a, b fragments.

• Change fragments so that d(a, b) > r .
• Insert r nodes (easier).
• Delete r nodes (if they can, we can).
• Change r nodes for others (normalization).

Arnoldo Müller, Takeshi Shinohara Fast Approximate Matching of Programs

Appendix

Destroying our technique (Summary)
Many fragments must be added/modified/deleted. (IR compensates)

• Fragment insertion:
• New instructions must be added.
• Many new fragments are required.

• Fragment deletion:
• If they can, we can (static analysis).

• Fragment modification:
• Insertion: requires r insertions.

• Program can grow very much.
• Deletion: requires r deletions.

• if they can we can.

• Replacement: term re-writing.

Arnoldo Müller, Takeshi Shinohara Fast Approximate Matching of Programs

Appendix

Replacement
For Strings is already hard

• abcdef
• ahhhef (for r = 3)
• When alphabet (instructions for fragments)

= 30:
• p(30, 3) = 24360
• p(30, 7) = 1.026e + 10

• For trees the possible permutations get
bigger!

• Architectures with more instructions!

Arnoldo Müller, Takeshi Shinohara Fast Approximate Matching of Programs

Appendix

Replacement
For Strings is already hard

• abcdef
• ahhhef (for r = 3)
• When alphabet (instructions for fragments)

= 30:
• p(30, 3) = 24360
• p(30, 7) = 1.026e + 10

• For trees the possible permutations get
bigger!

• Architectures with more instructions!

Arnoldo Müller, Takeshi Shinohara Fast Approximate Matching of Programs

	Appendix
	Appendix

