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Libre/ Open Source Software
Protect Libre Software!

• FLOSS (Free/Libre Open Source Software).
• Copy-left. (GPL)
• Licensing Violations.

• FSF and GPL-violations.
• Using “strings” (binutils).

• Objective: Binary Program Matching.
• Different Compilers/Obfuscators/Strings.
• Return the top n most similar programs.
• Detect License Violations.
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Expanded Fragment:

count_1  =  Phi(1, count_1 + 1)

i0 = i

res = 1

count = 1

block_0:

res_1 = Phi(res, res_2)

if count_1 > i0 goto block_1

res_2 = res_1 * count_1

count_2 = count_1 + 1

goto block_0

block_1:

return res_1

count_1 = Phi(count, count_2)

count_1  =  Phi(count, count_2)

• Output: machine instruction trees.
• Matched with a distance function d .
• Ignore strings, function names.



Fast Matching With Spatial Indexes
Select pivots, create a tuple based on d .

• Similarity search:
• M-tree & friends: slow for d .
• Vectors: B-tree (1 dim) or Spatial Index.

• Trees cannot be indexed directly.
• SMAP can be used to index them:

• Select i pivots p1 . . . pi from the database.
• Create a tuple (d(o, p1), . . . , d(o, pi)) for each

object o.
• Calculate lower bound with L∞ distance.

• This tuple can be stored in the Spatial
Index!
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Synopsis of the Paper
Tackle performance and precision issues

• Matching one program was slow (3 days):
• 10 hours (7x) (Tree parsing, d).
• 6 min (682x) (Spatial Index + SMAP).

• Previous ranking technique was not
precise:

• 22% of the time correct.
• Improved to 96% (IR).

• Experiments:
• DB:1670 programs.
• Whole program matching. Max. obfuscation.
• Query sets: (Default 1290 100%) (ZKM 290

100%) (Sandmark 280 96%)
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Thank you!
Contact Information

• Arnoldo Müller
• arnoldoMuller@gmail.com
• arnoldo@daisy.ai.kyutech.ac.jp

• For a tree (and anything else) matcher:
• http://obsearch.berlios.de/
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Appendix

Distance of Fragments

Example (Trees a(b, c) and a(b, d))
Multi-set:

d(a(b, c), a(b, d)) =

(6+6)−(2×3)
2 = 3
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Appendix

Matching Techniques Employed
Spatial Indexes

• Spatial Indexes work in Euclidean spaces.
• Trees cannot be indexed directly.
• SMAP can be used to index them:

• Select i pivots p1 . . . pi from the database.
• Create a tuple (d(o, p1), . . . , d(o, pi)) for each

object o.

• This tuple can be indexed in the spatial
index!
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Appendix

Matching Techniques Employed
Sequential Search

• Tree creation is a heavy task.
• Parse a string into a tree.

• Load all the trees into memory? No!
• Match the database against the query.
• Fragments of size differing in more than r

ignored.
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Appendix

Program Ranking
Naive calculation replaced by information retrieval ranking

• For an application a and a query q:
• Naive calculation: |q∩a|

|a| (NR).
• “Rareness” of fragments not taken into

account.
• Distribution of the fragments in q and a

ignored.
• Information retrieval techniques (IR).

• Consider all this and more.
• Employed Lucene (open source information

retrieval software).
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Appendix

Performance

• Database size: 340000 fragments (30 MB).
• Query size: 1641 fragments (100kb).
• Prototype written in C++.
• PRTREE : Spatial Index.
• SEQ: Sequential search.
• k : Retrieve closest k elements from DB.
• r : For query q retrieve only if d(q, j) ≤ r

where j ∈ DB.
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Pruning by tree size
Improvement in sequential search.
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Using cache
Using cache improves considerably performance
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Distance Computations
Distance computations are greatly reduced by PRTREE
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Appendix

Triangle Inequality
Some notes:

• Exploit this:
• |d(x , y)− d(x , z)| ≤ d(y , z)

• L∞ for 2 vectors p and q:
• L∞ = maxi(|pi − qi |)
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Appendix

Preliminaries

• Programs downloaded from different
sources.

• Query sets constructed:
• A: byte-code as it was indexed.
• B: Zelix Klass Master 4.5.
• C: Sandmark 3.4.

Set Transformation # of Programs
A default 1293
B Zelix 290
C Sandmark 281
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Overall Results for IR
• %X : accum. % of identifications for set X .
• m(X ): number of matches found for set X .

n %A m(A) %B m(B) %C m(C)
1 97.3 1259 96.8 281 87.5 246
2 98.8 19 99.6 8 90.7 9
3 99.3 7 100 1 92.1 4
4 99.8 6 – – 93.5 4
5 99.9 1 – – 94.6 3
6 99.9 0 – – 94.6 0
7 99.9 0 – – 95.0 1
8 99.9 0 – – 95.3 1
9 100 1 – – 95.7 1

10 – – – – 96.0 1



Overall Results for NR
• %X : accum. % of identifications for set X .
• m(X ): number of matches found for set X .

n %A m(A) %B m(B) %C m(C)
1 18.2 236 4.4 13 9.6 27
2 33.2 194 15.8 33 12.8 9
3 49.1 206 25.5 28 14.2 4
4 59.0 127 33.4 23 16.0 5
5 65.1 80 40.0 19 17.7 5
6 69.9 61 45.5 16 18.1 1
7 73.7 50 51.0 16 19.5 4
8 77.4 48 54.1 9 20.6 3
9 80.6 41 58.2 12 21.3 2

10 83.6 38 62.4 12 22.7 4



Appendix

License Violation Detection Example
Embedded open source can be detected

• Query: “ccmtools”
• Returned:

• antlr-2.7.6-1jpp.noarch
• antlr-2.7.6-1jpp.noarch.rpm.jpackage
• antlr
• ccmtools

• “antlr” is actually embedded in ccmtools
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Appendix

Next Steps!

• Expression normalization.
• Normalization Learning?
• Syntactically close but semantically

different fragments.
• Other fragment extraction approaches.
• Detection of false negatives must be

implemented.
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Appendix

Summary

• A very simple and new technique has been
proposed.

• Fragment + Tree-distance + Ranking.
• Performance was substantially improved

• Use of Spatial Indexes + SMAP.
• Reliability improved

• By using information retrieval techniques.
• Possible applications:

• Low-level duplicated functionality detection.
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Appendix

Destroying our Technique
Ways of attacking our method

• Disable the extraction of SSA:
• Dynamic fragment extraction.

• Transform the Fragments:
• Modify assignment expressions.
• Many fragments must be changed/added (IR).
• Some fragments cause more damage than

others.
• Depends on IR equations (private).
• Depends on Database (frequency, private).
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Appendix

Modifying fragments
Make d > r

• Fragments are trees.
• We use a range r to accept 2 fragments as

similar:
• d(a, b) ≤ r for a, b fragments.

• Change fragments so that d(a, b) > r .
• Insert r nodes (easier).
• Delete r nodes (if they can, we can).
• Change r nodes for others (normalization).
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Appendix

Destroying our technique (Summary)
Many fragments must be added/modified/deleted. (IR compensates)

• Fragment insertion:
• New instructions must be added.
• Many new fragments are required.

• Fragment deletion:
• If they can, we can (static analysis).

• Fragment modification:
• Insertion: requires r insertions.

• Program can grow very much.
• Deletion: requires r deletions.

• if they can we can.

• Replacement: term re-writing.
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Appendix

Replacement
For Strings is already hard

• abcdef
• ahhhef (for r = 3)
• When alphabet (instructions for fragments)

= 30:
• p(30, 3) = 24360
• p(30, 7) = 1.026e + 10

• For trees the possible permutations get
bigger!

• Architectures with more instructions!

Arnoldo Müller, Takeshi Shinohara Fast Approximate Matching of Programs



Appendix

Replacement
For Strings is already hard

• abcdef
• ahhhef (for r = 3)
• When alphabet (instructions for fragments)

= 30:
• p(30, 3) = 24360
• p(30, 7) = 1.026e + 10

• For trees the possible permutations get
bigger!

• Architectures with more instructions!

Arnoldo Müller, Takeshi Shinohara Fast Approximate Matching of Programs


	Appendix
	Appendix


